Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Biomol Struct Dyn ; 39(12): 4547-4554, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1317841

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the causative agent of Coronavirus disease 19 (COVID-19), is a novel human Coronavirus that is responsible for about 300,000 deaths worldwide. To date, there is no confirmed treatment or vaccine prevention strategy against COVID-19. Due to the urgent need for effective treatment, drug repurposing is regarded as the immediate option. Potential drugs can often be identified via in silico drug screening experiments. Consequently, there has been an explosion of in silico experiments to find drug candidates or investigate anecdotal claims. One drug with several anecdotal accounts of benefit is Cefuroxime. The aim of this study was to identify and summarize in silico evidence for possible activity of Cefuroxime against SARS-CoV-2.To this end, we performed a scoping review of literature of in silico drug repurposing experiments for SARS-CoV-2 using PRISMA-ScR. We searched Medline, Embase, Scopus, Web of Knowledge, and Google Scholar for original studies published between 1st Feb, 2020 and 15th May, 2020 that screened drug libraries, and identified Cefuroxime as a top-ranked potential inhibitor drug against SARS-CoV-2 proteins. Six studies were identified. These studies reported Cefuroxime as a potential inhibitor of 3 key SARS-CoV-2 proteins; main protease, RNA dependent RNA polymerase, and ACE2-Spike complex. We provided a summary of the methodology and findings of the identified studies. Our scoping review identified significant in silico evidence that Cefuroxime may be a potential multi-target inhibitor of SARS-CoV-2. Further in vitro and in vivo studies are required to evaluate the potential of Cefuroxime for COVID-19.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , Drug Repositioning , Cefuroxime/pharmacology , Computer Simulation , Humans , Molecular Docking Simulation , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL